Abstract:While data plays a crucial role in training contemporary AI models, it is acknowledged that valuable public data will be exhausted in a few years, directing the world's attention towards the massive decentralized private data. However, the privacy-sensitive nature of raw data and lack of incentive mechanism prevent these valuable data from being fully exploited. Addressing these challenges, this paper proposes inclusive and incentivized personalized federated learning (iPFL), which incentivizes data holders with diverse purposes to collaboratively train personalized models without revealing raw data. iPFL constructs a model-sharing market by solving a graph-based training optimization and incorporates an incentive mechanism based on game theory principles. Theoretical analysis shows that iPFL adheres to two key incentive properties: individual rationality and truthfulness. Empirical studies on eleven AI tasks (e.g., large language models' instruction-following tasks) demonstrate that iPFL consistently achieves the highest economic utility, and better or comparable model performance compared to baseline methods. We anticipate that our iPFL can serve as a valuable technique for boosting future AI models on decentralized private data while making everyone satisfied.
Abstract:Multi-agent learning has gained increasing attention to tackle distributed machine learning scenarios under constrictions of data exchanging. However, existing multi-agent learning models usually consider data fusion under fixed and compulsory collaborative relations among agents, which is not as flexible and autonomous as human collaboration. To fill this gap, we propose a distributed multi-agent learning model inspired by human collaboration, in which the agents can autonomously detect suitable collaborators and refer to collaborators' model for better performance. To implement such adaptive collaboration, we use a collaboration graph to indicate the pairwise collaborative relation. The collaboration graph can be obtained by graph learning techniques based on model similarity between different agents. Since model similarity can not be formulated by a fixed graphical optimization, we design a graph learning network by unrolling, which can learn underlying similar features among potential collaborators. By testing on both regression and classification tasks, we validate that our proposed collaboration model can figure out accurate collaborative relationship and greatly improve agents' learning performance.